Unary Pushdown Automata and Straight-Line Programs
نویسندگان
چکیده
We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs—one for the prefix, one for the lasso—that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNPhardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards.
منابع مشابه
Deterministic Pushdown Automata and Unary Languages
The simulation of deterministic pushdown automata defined over a one-letter alphabet by finite state automata is investigated from a descriptional complexity point of view. We show that each unary deterministic pushdown automaton of size s can be simulated by a deterministic finite automaton with a number of states that is exponential in s. We prove that this simulation is tight. Furthermore, i...
متن کاملUnary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds
It is well known that a context-free language defined over a one-letter alphabet is regular. This implies that unary context-free grammars and unary pushdown automata can be transformed into equivalent finite automata. In this paper, we study these transformations from a descriptional complexity point of view. In particular, we give optimal upper bounds for the number of states of nondeterminis...
متن کاملUnary Resolution: Characterizing Ptime
We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring (whose elements can be understood as logic programs or sets of rewriting rules over first-order terms), a construction stemming from an interactive interpretation of cut-elimination known as the geometry of interaction. More precisely, we restrict this framework...
متن کاملMemoization for Unary Logic Programming: Characterizing PTIME
We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for...
متن کاملThe Minimum Amount of Useful Space: New Results and New Directions
We present several new results on minimal space requirements to recognize a nonregular language: (i) realtime nondeterministic Turing machines can recognize a nonregular unary language within weak log logn space, (ii) log logn is a tight space lower bound for accepting general nonregular languages on weak realtime pushdown automata, (iii) there exist unary nonregular languages accepted by realt...
متن کامل